Single-cell electroporation arrays with real-time monitoring and feedback control.
نویسندگان
چکیده
Rapid well-controlled intracellular delivery of drug compounds, RNA, or DNA into a cell--without permanent damage to the cell--is a pervasive challenge in basic cell biology research, drug discovery, and gene delivery. To address this challenge, we have developed a bench-top system comprised of a control interface, that mates to disposable 96-well-formatted microfluidic devices, enabling the individual manipulation, electroporation and real-time monitoring of each cell in suspension. This is the first demonstrated real-time feedback-controlled electroporation of an array of single-cells. Our computer program automatically detects electroporation events and subsequently releases the electric field, precluding continued field-induced damage of the cell, to allow for membrane resealing. Using this novel set-up, we demonstrate the reliable electroporation of an array (n = 15) of individual cells in suspension, using low applied electric fields (<1 V) and the rapid and localized intracellular delivery of otherwise impermeable compounds (Calcein and Orange Green Dextran). Such multiplexed electrical and optical measurements as a function of time are not attainable with typical electroporation setups. This system, which mounts on an inverted microscope, obviates many issues typically associated with prototypical microfluidic chip setups and, more importantly, offers well-controlled and reproducible parallel pressure and electrical application to individual cells for repeatability.
منابع مشابه
Optimal Electroporation Condition for Small Interfering RNA Transfection into MDA-MB-468 Cell Line
Background: Electroporation is a valuable tool for small interfering RNA (siRNA) delivery into cells because it efficiently transforms a wide variety of cell types. Since electroporation condition for each cell type must be determined experimentally, this study presents an optimal electroporation strategy to reproducibly and efficiently transfect MDA-MB 468 human breast cancer cell with siRNA. ...
متن کاملMonoclonal Cell Line Generation and CRISPR/Cas9 Manipulation via Single-Cell Electroporation.
Stably transfected cell lines are widely used in drug discovery and biological research to produce recombinant proteins. Generation of these cell lines requires the isolation of multiple clones, using time-consuming dilution methods, to evaluate the expression levels of the gene of interest. A new and efficient method is described for the generation of monoclonal cell lines, without the need fo...
متن کاملControllable in-situ cell electroporation with cell positioning and impedance monitoring using micro electrode array
This paper reports a novel microarray chip for in-situ, real-time and selective electroporation on individual cells integrated with cell positioning and impedance monitoring. An array of quadrupole-electrode units (termed positioning electrodes) and pairs of planar center electrodes located at the centers of each quadrupole-electrode unit were fabricated on the chip. The positioning electrodes ...
متن کاملA Statistical Method for Sequential Images – Based Process Monitoring
Today, with the growth of technology, monitoring processes by the use of video and satellite sensors have been more expanded, due to their rich and valuable information. Recently, some researchers have used sequential images for image defect detection because a single image is not sufficient for process monitoring. In this paper, by adding the time dimension to the image-based process monitorin...
متن کاملSoftware Automated Genomic Engineering (SAGE) Enabled by Electrowetting-on-Dielectric Digital Microfluidics
Software automated genomic engineering (SAGE) enables arbitrary genetic modification of cells on a fluidic platform that implements the multiplex automated genomic engineering (MAGE) process [1]. Electrowetting-ondielectric (EWD) digital microfluidics is well suited for SAGE because of its inherent reconfigurability, small reagent volumes, and parallel processing capability [2]. We report on th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 7 4 شماره
صفحات -
تاریخ انتشار 2007